THE SYLLABI OF NON METAL INORGANIC CHEMISTRY

Faculty	: FMIPA UNY
Study Program	: Chemistry
Course /Code	: KIM6409
Credit	: 4 sks (3T, 1P)
Semester /Term	: 2
Prerequisite	: General Chemistry
Lecturer	: Prof. Dr. Hari Sutrisno
	Dr. Dyah Purwaningsih

I. Course Description:

Modern Atomic Theory is essential and, this should be composed: Spectrum of Hydrogen Atom, the wave equation of Schrödinger and its significance to the s. p, d, and f orbitals; the stability of electronic configuration of species. Screening effect of orbitals and effective nuclear charge are to discussed. Periodic table of the elements in various types are proposed, consisting of classification of elements into particular Group and the chemical aspect of particular non metal elements. Covalent bond, hybridization, and VSEPR Theory are discussed in detail. Acid-base concept of Bronsted-Lowry, Lewis, Usanovich - Lux, and Hard-Soft of Pearson are also introduced. Redox, balancing typical reaction, Reduction potential concept, and Latimer-Frost Diagrams are described. Selected non metal elements, Hydrogen, Boron, Groups of Carbon, Nitrogen, Oxygen, Halogen, and Noble Gas are elaborated via typical electronic structure, catenation, geometry aspects approached by hybridization and VSEPR Theory, and anomaly aspects for particular species. Typical chemical aspect in water involving particular hydrogen bond, hydride compound, allotrop of carbon, diamond, graphite, and fulerene are well discussed.

II. Standard Competency:

Students understand basic concepts of electronic structure of atom, various aspects of periodicity of the elements, chemical bonds, acid-base, redox composing Latimer and Frost Diagrams, and chemical aspects of non metal elements.

Meeting	Competence	Topic	Strategy	Reference
1-2	Understand	THE STRUCTURE OF ATOM :	Lecturing	1. Hand out
	(1) the Bohr model	1.1. Spectrum of Hydrogen Atom	Discussing	(PPT)
	of atom and the	and Bohr Theory	Problem -	
	spectrum of	1.2. The Application of Bohr	Solving	2. Dictate:
	hydrogen atom	Theory, Its weakness, and Fine		Kimia
	(2) wave	Structure of the Spectrum		Anorganik I
	mechanics of	1.3. Wave mechanics of Atomic		
	atomic model, and	Theory: Atomic Orbitals, s, p, d,		
	orbitals	and <i>f</i>)		

III. Activity Outline :

2.4	Understand the	THE PERIODIC TABEL OF	Locturing	3. Geoff
3-4	classification of	ELEMENT	Lecturing Discussing	3. Geoff Rayner-
	elements in the	Organization of the Periodic Table,	Problem -	Canham:
	periodic table and	Classification of elements in the	Solving	Descriptive
	the various models	Table and The Periodic Properties	bolving	Inorganic
	of the tables	Misconception Cases		Chemistry
5-7	Describe (1) the	MOLECULAR STRUCTURE :	Lecturing	Chemistry
5-7	covalent bond	3.1. Simple Bonding Theory:	Discussing	
	(2) VSEPR	Structure Lewis dan Linnet;	Problem -	
	geometry of	Resonansi	Solving	
	molecule	3.2.Bonding Models: Ionic	~ 8	
		Compounds		
		3.3 Bonding Models: Covalent		
		Compounds (Valence Bond Theory		
		and MOT)		
		3.4. VSEPR Theory		
		3.5. MO Theory		
		3.6. Polar Molecular		
		(electronegativity; size effect atom)		
8		MIDTERM EXAM		
9-11	Understand the	ACID AND BASE	Lecturing	
/ 11	various types of	4.1. Arrhenius, Bronsted – Lowry,	Discussing	
	acid-base	Lewis	Problem -	
	compounds	4.2. Ingol-Robinson; Usanovich;	Solving	
	r · · · ·	Acid-Base Lux-Flood, Acid-Base	8	
		in Solvent System, and Frontier		
		Orbital		
		4.3. Soft-Hard Acid-Base		
		4.4. The Strength of Acid-Base, the		
		Binary Acid and the Oxy Acid and		
		Superacid		
12-14	(1) Understand the	CHEMICAL REACTION	Lecturing	
	redox and non	5.1. Non Redox	Discussing	
	redox reaction	5.2. Redox, the Reduction	Problem -	
	(2) Describe the	potential, and Latimer-Frost	Solving	
	Latimer-Frost	Diagram.		
	Diagram		.	
15	Understand the	HYDROGEN	Lecturing	
	typical chemical	6.1. Isotop, Chemical aspects,	Discussing	
	aspect of hydrogen,	Bonding on Hydrogen, Hydrate,	Problem -	
	boron, carbon,	and Hydrogen ion	Solving	
	nitrogen and	6.2. The preparation of Hydrogen,		
	oxygen	Hydride, Water, and Hydrogen Bond.		
		GROUP BORON		
		The Trend of the Group, and Boron		
		GROUP CARBON		
		The Trend of the group, Carbon		
		and Silicon		
		GROUP NITROGEN		
		The trend of the group: Nitrogen,		
		Phosporous, and Arsen		
		GROUP OXYGEN		
		The trend of the group: Anomaly		
		of Oxygen, Oxygen and Sulphur		
16	Understand the	HALOGEN		
1.1.1	Chaerstand the			
10	chemical trend of	Anomaly of Eluorine Eluorine		
10	chemical trend of group of halogen	Anomaly of Fluorine, Fluorine, Clorine, Halide and its Oxydes.		
10	chemical trend of group of halogen and Noble Gas	Anomaly of Fluorine, Fluorine, Clorine, Halide and its Oxydes, Oxyhalide Acids and its Anions,		

	and Interhalogen compound. NOBLE GAS: The Trend of the Group, Xenon fluoride and Xenon oxyde,	
17	FINAL EXAM	

IV. Tasks:

Students should solve the exercise problems spesified in the Dictate.

V. References:

Compulsory :

- 1. Handout of (printed) power points
- 2. Diktat Kimia Anorganik I

Suggested Reading :

- 1. J. Huheey, E.A. Keiter, R.L. Keiter: "Principles of Structure and Reactivity", 1993, New York, HarperCollins College Publishers
- 2. G.L. Miessler, P.J. Fischer and D.A. Tarr: "Inorganic Chemistry", 2014,
- 3. G. Rayner-Canham : "Descriptive Inorganic Chemistry", 1996, New York, W.H. Freeman and Company
- 4. D.F. Shriver, P.W.Atkins, and C.H. Langford : "Inorganic Chemistry", 1990, Oxford, Oxford University Press.
- 5. F.A. Cotton, and G. Wilkinson : "Basic Inorganic Chemistry", 1976, New York, John Wiley & Sons, Inc.
- 6. N.N. Greenwood, and A. Earnshaw : "Chemistry of the Elements", 1989, Oxford, Pergamon Press.

VI. Evaluation:

Mid-term test	: 40%
Final exam	: 40%
Practice	: 20%